Main content area

Identification and determination of extracellular phytate-degrading activity in actinomycetes

Ghorbani-Nasrabadi, Reza, Greiner, Ralf, Alikhani, Hossein Ali, Hamedi, Javad
World journal of microbiology & biotechnology 2012 v.28 no.7 pp. 2601-2608
Streptomyces alboniger, agar, fermentation, glycerol, pH, phytases, phytic acid, sampling, screening, sequence analysis, soil ecology, soil sampling
In this study 97 soil samples from different soil ecosystems were collected. The initial screening was performed on modified glycerol arginine agar (MGAA) to isolate common actinomycetes and on modified MGA-SE (MMGA-SE) to isolate rare actinomycetes. Sixty-seven isolates potentially producing extracellular phytate-degrading activity were identified. The potential to dephosphorylate phytate was confirmed in liquid culture for 46.3 % of the isolates. 12 strains were selected for a direct determination of their phytate-degrading capacity. The results highlighted that the selected isolates produced extracellular phytate-degrading activity; however their capacity in InsP6 degradation was different. In addition the fermentation medium had an effect on the extent of phytate degradation. Some enzymatic properties of the phytases from isolate No. 43 and isolate No. 63 were determined after obtaining phytase-enriched samples. The enzymes had maximum phytate-degrading capability at 55 °C and pH 5 (isolate No. 43) and 37 °C and pH 7 (isolates No. 63), respectively. Due to their properties, the phytase of isolate No. 43 behaves like a histidine acid phytase, whereas the phytase of No. 63 showed similar enzymatic properties to the phytase of lily. To our knowledge, the results from this study demonstrated for the first time that actinomycetes produce extracellular phytate-degrading activity. By 16SrRNA sequencing, the more closely studied phytase producers were identified as Streptomyces sp. Isolate No. 43 showed 98 % identity to Streptomyces alboniger and S. venezuelae, while isolate No. 63 exhibited 98 % sequence identity to S. ambofaciens and S. lienomycini.