PubAg

Main content area

High‐throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea

Author:
Qiao, Jiangwei, Cai, Mengxian, Yan, Guixin, Wang, Nian, Li, Feng, Chen, Binyun, Gao, Guizhen, Xu, Kun, Li, Jun, Wu, Xiaoming
Source:
Plant biotechnology journal 2016 v.14 no.1 pp. 409-418
ISSN:
1467-7644
Subject:
Brassica napus, Brassica oleracea, Brassica rapa, artificial selection, chloroplast DNA, chloroplasts, diploidy, evolution, gene frequency, genetic relationships, genetic variation, haplotypes, inheritance (genetics), oilseed crops, rapeseed, single nucleotide polymorphism
Abstract:
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole‐genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C‐genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.