Main content area

Phenotypic plasticity in sex allocation and body size leads to trade-offs between male function and growth in a simultaneously hermaphroditic fish

Hart, Mary K.
Evolutionary ecology 2016 v.30 no.1 pp. 173-190
Serranus, body size, females, fish, gender differences, hermaphroditism, laboratory animals, males, mortality, phenotypic plasticity, sex allocation
Phenotypic plasticity in sex allocation enables organisms to maximize reproductive success in variable environments, and thus may generate different sex allocation patterns among populations that experience different mating opportunities. In this experiment, I test whether sex allocation is phenotypically plastic in Serranus tortugarum, a simultaneously hermaphroditic fish, by using reciprocal transplants among four reef study sites with populations at high and low densities and significant differences in sex allocation. Fish transplanted across different densities were predicted to alter sex allocation and body size through trade-offs in investments to somatic growth and male and/or female reproduction. As a control for effects of transplanting, I also transplanted fish across study sites with the same densities and marked and returned fish to their original study sites. As predicted, sex allocation and body size shifted significantly for fish transplanted across different densities but not for those transplanted across the same densities. Separate analyses revealed that the treatment effect on sex allocation was driven strongly by a reduction in male investment by fish transplanted from high to low density, and this reduction in male investment was accompanied by an increase in body size. Fish transplanted from low to high density did not appear to change either male or female investments, but they were smaller than transplants from low to low density. A trade-off between male and female function was not evident, but phenotypic plasticity in body size suggested a trade-off between growth and male function when sex allocation is adjusted. Large-scale empirical tests of sex allocation in the field are relatively rare, and the results of this experiment give novel insights into how animals respond to a change in mating opportunities under natural conditions. The effects of logistical problems associated with fieldwork, such as mortality of experimental animals, are considered in the discussion.