PubAg

Main content area

Diversity within the genus Elymus (Poaceae: Triticeae) II: analyses of variation within 5S nrDNA restrict membership in the genus to species with StH genomes

Author:
Baum, Bernard R., Edwards, Tara, Johnson, Douglas A.
Source:
Molecular genetics and genomics 2016 v.291 no.1 pp. 217-225
ISSN:
1617-4615
Subject:
DNA, Elymus, Leymus, genome, genomics, hexaploidy, tetraploidy
Abstract:
The genus Elymus is a repository for a large number of species that have been difficult to classify by traditional techniques due to their remarkable levels of polymorphism. Following the genome analyses of Yen and Yang (Genus Elymus 5:58–362, 2013), we used sequences of the nr5SDNA to investigate diversity within those 24 species having St and H haplomes (Baum et al. Mol Genet Genomics 290:329–42, 2015) and for which the genome status was known. The present work extends this analysis to include eight species for which there was no information on genomic status. Our results show that these eight have nr5SDNA sequences that can be assigned to unit classes of orthologous sequences found in St and H haplomes, suggesting that the presence of St and H haplomes is characteristic of the genus. We then carried out a set of canonical discriminant analyses based on 247 DNA new sequences from these 8 species plus the 1054 sequences previously identified from 24 Elymus species. Sequences were analyzed to answer the following questions: Do the species integrate or are they different? Are the tetraploids different from the higher-ploid species? Are the species united within sections, or the same within regions? How do the species fare when divided according to sections? The main results of the canonical discriminant analyses are that the species are united within the tetraploids and within the hexaploids, within each region and within each section. In addition, a series of classificatory discriminant analyses showed that the identification tests are different, although not sufficiently useful for the discrimination of all the species. We also demonstrate the power of our approach by showing that the voucher for Elymus mobilis is not Elymus at all, but Leymus.