Main content area

Winterization of peanut biodiesel to improve the cold flow properties

Pérez, Ángel, Casas, Abraham, Fernández, Carmen María, Ramos, María Jesús, Rodríguez, Lourdes
Bioresource technology 2010 v.101 no.19 pp. 7375-7381
chemical composition, peanuts, methanol, differential scanning calorimetry, filtration, esters, crystallization, biodiesel, temperature, pour point, cold
Biodiesel is susceptible to start-up and performance problems, consistent with its chemical composition, when vehicles and fuel systems are subjected to cold temperatures. In this work, a comprehensive evaluation of the crystallization behavior of different biodiesels was performed by measuring the cold filter plugging point (CFPP), cloud point (CP) and pour point (PP). Results were related to differential scanning calorimetry (DSC) thermograms. Peanut methyl esters in particular led to the most unfavorable properties due to the presence of long-chain saturated compounds (arachidic or C20:0, behenic or C22:0, and lignoceric or C24:0 acid methyl esters) approaching 6wt.%. The cold flow properties may be improved with different winterization techniques to eliminate some of these compounds. In this work, various techniques are tested, and the best technique is found to be crystallization filtration using methanol, which reduces the CFPP from 17°C to −8°C with a biodiesel loss of 8.93wt.%. Moreover, the cake from filtration, enriched with long-chain saturated methyl esters, can be used as phase change material (PCM) for thermo-regulated materials.