PubAg

Main content area

Identification of Theileria parva and Theileria sp. (buffalo) 18S rRNA gene sequence variants in the African Buffalo (Syncerus caffer) in southern Africa

Author:
Chaisi, Mamohale E., Sibeko, Kgomotso P., Collins, Nicola E., Potgieter, Fred T., Oosthuizen, Marinda C.
Source:
Veterinary parasitology 2011 v.182 no.2-4 pp. 150-162
ISSN:
0304-4017
Subject:
DNA, DNA primers, Syncerus caffer, Theileria parva, blood sampling, buffaloes, cattle, cattle diseases, disease reservoirs, genes, genotype, hybridization, mixed infection, national parks, nucleotide sequences, parasites, phylogeny, polymerase chain reaction, ranching, ribosomal RNA, theileriosis, South Africa
Abstract:
Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the distinction between Theileria sp. (buffalo) and T. parva and indicate the existence of a single group of T. parva and two Theileria sp. (buffalo) 18S rRNA gene variants in the African buffalo. Despite the observed variation in the full-length parasite 18S rRNA gene sequences, the area in the V4 hypervariable region where the RLB and real-time PCR hybridization probes were developed was relatively conserved. The T. parva specific real-time PCR assay was able to successfully detect all T. parva variants and, although amplicons were obtained from Theileria sp. (buffalo) DNA, none of the Theileria sp. (buffalo) 18S rRNA sequence variants were detected by the T. parva-specific hybridization probes.
Agid:
507006