PubAg

Main content area

Caramel as a Model System for Evaluating the Roles of Mechanical Properties and Oral Processing on Sensory Perception of Texture

Author:
Wagoner, Ty B., Luck, Paige J., Foegeding, E. Allen
Source:
Journal of food science 2016 v.81 no.3 pp. S736
ISSN:
0022-1147
Subject:
adhesion, agar, corn syrup, electromyography, gelatin, hardness, mastication, mechanical properties, muscles, rheology, stickiness, texture
Abstract:
Food formulation can have a significant impact on texture perception during oral processing. We hypothesized that slight modifications to caramel formulations would significantly alter mechanical and masticatory parameters, which can be used to explain differences in texture perception. A multidisciplinary approach was applied by evaluating relationships among mechanical properties, sensory texture, and oral processing. Caramels were utilized as a highly adhesive and cohesive model system and the formulation was adjusted to generate distinct differences in sensory hardness and adhesiveness. Descriptive analysis was used to determine sensory texture, and mechanical properties were evaluated by oscillatory rheology, creep recovery, and pressure sensitive tack measurements. Oral processing was measured by determining activity of anterior temporalis and masseter muscles via electromyography and tracking jaw movement during chewing. The substitution of agar or gelatin for corn syrup at 0.6% w/w of the total formulation resulted in increased sensory hardness and decreased adhesiveness. Creep recovery and pressure sensitive tack testing were more effective at differentiating among treatments than oscillatory rheology. Hardness correlated inversely with creep compliance, and both stickiness and tooth adhesiveness correlated with pressure sensitive adhesive force. Harder samples, despite being less adhesive, were associated with increased muscle activity and jaw movement during mastication. Tooth packing, not linked with any mechanical property, correlated with altered jaw movement. The combination of material properties and oral processing parameters were able to explain all sensory texture differences in a highly adhesive food.
Agid:
5148508