Main content area

The Morphology, Ultrastructure and SSU rRNA Gene Sequence of a New Freshwater Flagellate, Neobodo borokensis n. sp. (Kinetoplastea, Excavata)

Tikhonenkov, Denis V., Janouškovec, Jan, Keeling, Patrick J., Mylnikov, Alexander P.
The journal of eukaryotic microbiology 2016 v.63 no.2 pp. 220-232
electron microscopy, flagellum, freshwater, genes, habitats, microbodies, microsymbionts, microtubules, new species, nucleotide sequences, phylogeny, ribosomal RNA, salinity, ultrastructure
A small free‐living freshwater bacteriotrophic flagellate Neobodo borokensis n. sp. was investigated by electron microscopy and analysis of its SSU ribosomal RNA gene. This protist has paraxonemal rods of typical bodonid structure in the flagella, mastigonemes on the proximal part of the posterior flagellum, two nearly parallel basal bodies, a compact kinetoplast, and discoid mitochondrial cristae. The flagellar pocket is supported by three microtubular roots (R1, R2 and R3) originating from the kinetosome. The cytopharynx is supported by the root R2, a microtubular prism, cytopharynx associated additional microtubules (CMT) and cytostome associated microtubules (FAS) bands. Symbiotic bacteria and small glycosomes were found in the cytoplasm. Cysts have not been found. The flagellate prefers freshwater habitats, but tolerates salinity up to 3–4‰. The overall morphological and ultrastructural features confirm that N. borokensis represents a new species of the genus Neobodo. Phylogenetic analysis of SSU rRNA genes is congruent with the ultrastructure and strongly supports the close relationship of N. borokensis to Neobodo saliens, N. designis, Actuariola, and a misidentified sequence of “Bodo curvifilus” within the class Kinetoplastea.