U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Surfactant seed coating - A strategy to improve turfgrass establishment on water repellent soils

Matthew D. Madsen, Stanley J. Kostka, April Hulet, Bruce E. Mackey, Matthew A. Harrison, Mica F. McMillan
Surfactant seed coating - A strategy to improve turfgrass establishment on water repellent soils 2013 v. no. pp. 205-210
Festuca arundinacea, athletic fields, belowground biomass, coatings, ethylene oxide, golf courses, irrigation water, nonionic surfactants, plant density, plant establishment, propylene oxide, seed dressings, seed germination, seeds, soil treatment, soil water content, sowing, turf grasses, water repellent soils
Turfgrass managers can experience poor seeding success when trying to establish golf course greens and sports fields in water repellent soils. Nonionic soil surfactant formulations are commonly used to treat water repellent soils and subsequently increase water reserves for seed germination and plant establishment. Typically, irrigation water is used as a carrier in the application of soil surfactants. While this approach is effective, it can be costly and difficult to apply in certain environments. Our purpose was to describe a more efficient approach for applying soil surfactants using seed coating technology. Within a laboratory grow-room study, we compared the response of non-coated seed to seed coated with an ethylene oxide-propylene oxide block copolymer surfactant. Three surfactant-loading rates were evaluated in the study, 60, 80, and 100% weight of product to weight of seed (wt:wt). Seeds were sown in either a severely water repellent or non-water repellent soil. In the water repellent soil, all surfactant coatings were effective in ameliorating water repellency and increasing plant establishment, with response parameters similar between the coating treatments. During the first nine days of the study, when tall fescue was germinating and emerging, soil water content in the water repellent soil was on average 94% higher in pots sown with surfactant-coated seed, than non-coated seed. Plant density, cover, and above- and belowground biomass was respectively 79, 589, 429, and 244% higher than that produced from non-coated seed. In the wettable soil, moderate improvements in density, cover, and biomass was realized from the surfactant seed coating treatment, particularly at the 60% wt:wt loading rate. These results provide evidence that soil surfactants can be affectively applied using seed coating technology. Future field research is justified for testing surfactant seed coatings to establish golf course greens and sports fields from seed.