PubAg

Main content area

Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence

Author:
Szymańska-Chargot, Monika, Chylińska, Monika, Pieczywek, Piotr M., Rösch, Petra, Schmitt, Michael, Popp, Jürgen, Zdunek, Artur
Source:
Planta 2016 v.243 no.4 pp. 935-945
ISSN:
0032-0935
Subject:
apples, cell wall components, cell walls, cellulose, chemical analysis, fruiting, harvest date, hemicellulose, image analysis, microscopy, pectins, plant tissues, ripening, storage time, texture
Abstract:
MAIN CONCLUSION : Du ring on-tree ripening, the pectin distribution changed from polydispersed in cell wall to cumulated in cell wall corners. During apple storage, the pectin distribution returned to evenly dispersed along the cell wall. The plant cell wall influences the texture properties of fruit tissue for example apples become softer during ripening and postharvest storage. This softening process is believed to be mainly connected with changes in the cell wall composition due to polysaccharides undergoing an enzymatic degradation. These changes in polysaccharides are currently mainly investigated via chemical analysis or monoclonal labeling. Here, we propose the application of Raman microscopy for evaluating the changes in the polysaccharide distribution in the cell wall of apples during both ripening and postharvest storage. The apples were harvested 1 month and 2 weeks before optimal harvest date as well as at the optimal harvest date. The apples harvested at optimal harvest date were stored for 3 months. The Raman maps, as well as the chemical analysis were obtained for each harvest date and after 1, 2 and 3 months of storage, respectively. The analysis of the Raman maps showed that the pectins in the middle lamella and primary cell wall undergo a degradation. The changes in cellulose and hemicellulose were less pronounced. These findings were confirmed by the chemical analysis results. During development changes of pectins from a polydispersed form in the cell walls to a cumulated form in cell wall corners could be observed. In contrast after 3 months of apple storage we could observe an substantial pectin decrease. The obtained results demonstrate that Raman chemical imaging might be a very useful tool for a first identification of compositional changes in plant tissue during their development. The great advantage Raman microspectroscopy offers is the simultaneous localization and identification of polysaccharides within the cell wall and plant tissue.
Agid:
5177450