Main content area

Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau

Ma, Wenmei, Zhang, Xingchang
Journal of Arid Land 2016 v.8 no.3 pp. 331-340
arid lands, equations, hydraulic conductivity, infiltration rate, mixing, porosity, sandstone, sandy soils, soil density, soil erosion, soil water, water holding capacity, China
The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density (BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity (Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.