PubAg

Main content area

A cold-tolerant evergreen interspecific hybrid of Ocimum kilimandscharicum and Ocimum basilicum: analyzing trichomes and molecular variations

Author:
Dhawan, Sunita Singh, Shukla, Preeti, Gupta, Pankhuri, Lal, R. K.
Source:
Protoplasma 2016 v.253 no.3 pp. 845-855
ISSN:
0033-183X
Subject:
Ocimum basilicum, Ocimum kilimandscharicum, amplified fragment length polymorphism, cold, cold stress, cold tolerance, essential oils, eugenol, flavonoids, freezing, frost, gene overexpression, genes, genotype, hybrids, leaves, linalool, loci, methyl chavicol, methyl eugenol, microsatellite repeats, odors, plant response, polyphenols, polysaccharides, proline, random amplified polymorphic DNA technique, transcription (genetics), transcription factors, trichomes
Abstract:
Ocimum (Lamiaceae) is an important source of essential oils and aroma chemicals especially eugenol, methyl eugenol, linalool, methyl chavicol etc. An elite evergreen hybrid has been developed from Ocimum kilimandscharicum and Ocimum basilicum, which demonstrated adaptive behavior towards cold stress. A comparative molecular analysis has been done through RAPD, AFLP, and ISSR among O. basilicum and O. kilimandscharicum and their evergreen cold-tolerant hybrid. The RAPD and AFLP analyses demonstrated similar results, i.e., the hybrid of O. basilicum and O. kilimandscharicum shares the same cluster with O. kilimandscharicum, while O. basilicum behaves as an outgroup, whereas in ISSR analysis, the hybrid genotype grouped in the same cluster with O. basilicum. Ocimum genotypes were analyzed and compared for their trichome density. There were distinct differences on morphology, distribution, and structure between the two kinds of trichomes, i.e., glandular and non-glandular. Glandular trichomes contain essential oils, polyphenols, flavonoids, and acid polysaccharides. Hair-like trichomes, i.e., non-glandular trichomes, help in keeping the frost away from the living surface cells. O. basilicum showed less number of non-glandular trichomes on leaves compared to O. kilimandscharicum and the evergreen cold-tolerant hybrid. Trichomes were analyzed in O. kilimandscharicum, O. basilicum, and their hybrid. An increased proline content at the biochemical level represents a higher potential to survive in a stress condition like cold stress. In our analysis, the proline content is quite higher in tolerant variety O. kilimandscharicum, low in susceptible variety O. basilicum, and intermediate in the hybrid. Gene expression analysis was done in O. basilicum, O. kilimandscharicum and their hybrid for TTG1, GTL1, and STICHEL gene locus which regulates trichome development and its formation and transcription factors WRKY and MPS involved in the regulation of plant responses to freezing and cold. The analysis showed that O. kilimandscharicum and the hybrid were very close to each other but O. basilicum was more distinct in all respects. The overexpression of the WRKY coding gene showed high expression in the hybrid as compared to O. kilimandscharicum and O. basilicum and the transcription factor microspore-specific (MPS) promoter has also shown overexpression in the hybrid for its response against cold stress. The developed evergreen interspecific hybrid may thus provide a base to various industries which are dependent upon the bioactive constituents of Ocimum species.
Agid:
5177797