Main content area

Soil salinity effects on phenological traits, plant height and seed yield in rapeseed genotypes

Rameeh, Valiollah, Gerami, Mahyar
Soil Science Annual 2016 v.66 no.1 pp. 17-20
Brassica napus var. napus, breeding lines, flowering, genetic variation, genotype, phenology, plant height, rapeseed, salinity, salt stress, seed yield, soil salinity, variance
Among the various abiotic stresses limiting the crop production, salinity stress is the most important problem, which needs to be addressed and answered straight away. A pot experiment was carried out with rapeseed breeding lines in order to study the effects of salinity stress on phenological traits, plant height and seed yield of rapeseed. A factorial experiment was applied for evaluating the eight rapeseed genotypes under three salinity levels including 0, 6 and 12 dS m⁻¹ taking NaCl:CaCl₂ in the ratio of 1:1, which were equal to 42.8 mM and 85.7 mM, respectively. The results of analysis of the variance revealed significant variations among different salinity levels, genotypes and interaction effects of salinity levels × genotypes for days to flowering, days to end of flowering, days to maturity, plant height and seed yield. Due to increasing salinity levels, days to flowering, days to end of flowering and days to maturity were shortened. Although with increasing salinity levels plant height and seed yield of the genotypes were decreased but the ranks of genotypes were different in 0, 6 and 12 dS m⁻¹ salinity levels. The genotypes had significant genetic differences for the traits and the increments of differences also were decreased due to increasing salinity levels. The genotypes had high amount of genetic coefficient variation for days to flowering and seed yield, therefore the efficiency of selection of these two traits will be high. The genotypes including KRN1, LRT1 and Hyola401 with high amounts of seed yield in all salinity levels were considered as tolerant genotypes.