Main content area

Variations in Worker Cuticular Hydrocarbons and Soldier Isoprenoid Defensive Secretions Within and Among Introduced and Native Populations of the Subterranean Termite, Reticulitermes flavipes

Perdereau, Elfie, Dedeine, Franck, Christidès, Jean-Philippe, Bagnères, Anne-Geneviève
Journal of chemical ecology 2010 v.36 no.11 pp. 1189-1198
Reticulitermes flavipes, biochemical polymorphism, chemotypes, defensive secretions, hydrocarbons, nestmate recognition, social insects, subterranean termites, Florida, France, Louisiana
In social insects, cuticular hydrocarbons (CHCs) play a central role in nestmate recognition. CHCs have proved to be useful for identifying species and differentiating populations. In combination with CHCs, isoprenoid soldier defensive secretions (SDSs) have been previously used in some termite species for chemotaxonomic analyses. This study compared the levels of chemical variation within and among introduced (French) and native (U.S.) populations of the subterranean termite, Reticulitermes flavipes. Worker CHCs and soldier SDSs from termites collected from colonies in nine populations in Florida, Louisiana, and France were analyzed. Discriminant analyses revealed that both localities and populations can be distinguished by using the variation in CHC profiles. Principal component analyses of CHC profiles as well as the calculation of two distance parameters (Nei and Euclidean) revealed remarkable chemical homogeneity within and among French populations. These analyses also showed that the CHC profiles of French populations were closer to termite populations from Louisiana than to those from Florida. Of the six distinct SDS chemotypes, one was common to populations in France and Louisiana. The possibility that populations in France originated from Louisiana, and the potential causes and consequences of chemical homogeneity within introduced populations are discussed.