U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Screening of Various Phenolic Acids and Flavonoid Derivatives for their Anticholinesterase Potential

Author:
Ilkay Orhan, Murat Kartal, Fatma Tosun, Bilge Şener
Source:
Zeitschrift für Naturforschung 2014 v.62 no.11-12 pp. 829-832
ISSN:
1865-7125
Subject:
Alzheimer disease, acetylcholine, acetylcholinesterase, apigenin, behavior change, biochanin A, cholinesterase, cognition, naringin, neurodegenerative diseases, neurotransmitters, phenolic acids, quercetin, screening, silymarin
Abstract:
Alzheimer’s disease (AD), the most common form of dementia, is a neurodegenerative disease characterized by progressive cognitive deterioration together with declining activities of daily living and neuropsychiatric symptoms or behavioural changes. The oldest, on which most currently available drug therapies are based, is known as the “cholinergic hypothesis” and suggests that AD begins as a deficiency in the production of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors have gained a great popularity for the treatment of AD. In this study, we screened in vitro inhibitory activities of a number of phenolic acids (chlorogenic, caffeic, gallic, and quinic acids) as well as of various flavonoid derivatives (genistein, biochanin A, naringin, apigenin, quercetin, luteolin-7-O-rutinoside, kaempferol-3-O-galactoside, diosmin, silibinin, and silymarin) against AChE and BChE at 1 mg/ml concentration using a microplate-reader assay based on the Ellman method. Among them, only quercetin showed a substantial inhibition (76.2%) against AChE, while genistein (65.7%), luteolin-7-O-rutinoside (54.9%), and silibinin (51.4%) exerted a moderate inhibition on BChE.
Agid:
5230892