PubAg

Main content area

Improvement of Glyphosate Resistance through Concurrent Mutations in Three Amino Acids of the Ochrobactrum 5-Enopyruvylshikimate-3-Phosphate Synthase

Author:
Tian, Yong-Sheng, Xu, Jing, Xiong, Ai-Sheng, Zhao, Wei, Fu, Xiao-Yan, Peng, Ri-He, Yao, Quan-Hong
Source:
Applied and environmental microbiology 2011 v.77 no.23 pp. 8409-8414
ISSN:
0099-2240
Subject:
Arabidopsis, DNA, Ochrobactrum anthropi, amino acids, crops, glyphosate, mutants, site-directed mutagenesis
Abstract:
A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.
Agid:
525424