PubAg

Main content area

Differential shrinkage of mesophyll cells in transpiring cotton leaves: implications for static and dynamic pools of water, and for water transport pathways

Author:
Canny, Martin, Wong, Suan Chin, Huang, Cheng, Miller, Celia
Source:
Functional plant biology 2012 v.39 no.2 pp. 91-102
ISSN:
1445-4408
Subject:
Eucalyptus, Gossypium hirsutum, cotton, electron microscopes, leaves, mesophyll, photosynthesis, relative humidity, shrinkage, transpiration, vapor pressure, wilting
Abstract:
Shrinkage of palisade cells during transpiration, previously measured for sclerophyllous leaves of Eucalyptus where cells shrank equally, was compared with shrinkage in thin mesophytic leaves of cotton (Gossypium hirsutum L.). Selected vapour pressure differences (Δe) from 0.6 to 2.7kPa were imposed during steady-state photosynthesis and transpiration. Leaves were then cryo-fixed and cryo-planed paradermally, and images obtained with a cryo-scanning electron microscope (CSEM). Diameters of palisade ‘cavity cells’ within sub-stomatal cavities, and surrounding palisade ‘matrix cells’ were measured on CSEM images. Cavity and spongy mesophyll cells shrank progressively down to Δe=2.7kPa, while matrix cells remained at the same diameter at all Δe. Diameters were also measured of cavity and matrix cells quasi-equilibrated with relative humidities (RHs) from 100% to 86%. In leaves quasi-equilibrated with 95% RH, the cavity cells shrank so much as to be almost unmeasurable, while matrix cells shrank by only 6%. These data suggest that there are two distinct pools of water in cotton leaves: cavity plus spongy mesophyll cells (two-thirds of leaf volume) which easily lose water; and matrix cells (one-third of leaf volume), which retain turgor down to relative water loss=0.4, providing structural rigidity to prevent wilting. This phenomenon is probably widespread among mesophytic leaves.
Agid:
526308