Main content area

Changes in biochemical compounds in flesh and peel from Prunus persica fruits grown in Tunisia during two maturation stages

Dabbou, Samia, Lussiana, Carola, Maatallah, Samira, Gasco, Laura, Hajlaoui, Hichem, Flamini, Guido
Plant physiology and biochemistry 2016 v.100 pp. 1-11
Prunus persica, aldehydes, cultivars, demonstration farms, fruits, lactones, linoleic acid, oleic acid, peaches, phenols, polyunsaturated fatty acids, ripening, secondary metabolites, terpenoids, tissues, volatile compounds, Tunisia
Plants can synthesize tens to hundreds of thousands of primary and secondary metabolites with diverse biological properties and functions. Fatty acids (FA), phenolic compounds (PC) and volatile compounds (VC) of flesh and peel from three Prunus persica cultivars were evaluated at the Regional Centre of Agricultural Research – Experimental Farm (Sidi Bouzid, Tunisia) during two maturation stages. Palmitic, oleic and linoleic acids are the most abundant FA in Prunus persica cultivars. A genetic effect on FA composition was observed throughout the two sampling periods. Peel was rich in oleic acid with the highest content (31.3% on total FA) in ‘O'Henry’ cultivar at the commercial ripening date; flesh was rich in linoleic acid with the highest content (44.7% on total FA) in ‘Sweet Cap’ cultivar at the full ripening date. The monounsaturated/polyunsaturated fatty acids ratios were higher in the commercial ripe than in the full ripe fruits. The analysis of the composition of the VC led to the characterization of 98 different compounds, showing a very high variability among the cultivars. The full ripe fruit (peel and flesh) exhibited the highest total number of terpenoids. Commercial ripe peels were richest in the percentage of hydrocarbons. Comparing cultivars, ‘Sweet Cap’ cultivar showed the lowest contents of alcohols in peel and flesh of full ripe fruit but highest in peel of commercial ripe fruit, and lowest content of aldehydes in peel and flesh of commercial ripe fruit but highest in peel of ripe ones and the highest ones of lactones. Among PC, the highest contents were observed for o-diphenols and the values showed varietal influence. Total phenols contents decreased during ripening process (p < 0.05) in both peel and flesh tissues, except found for ‘Sweet Cap’ cultivar. In conclusion, to achieve better FA composition and greater VC and PC production of the peach fruit, P. persica cultivars should be harvested at the commercial ripening date.