Main content area

Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin

Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., Ueda, K.
Bioresource technology 2008 v.99 no.9 pp. 3801-3809
Fourier transform infrared spectroscopy, adsorption, chitosan, crosslinking, desorption, glycine (amino acid), gold, ionic strength, metal ions, models, pH, palladium, platinum, resins, scanning electron microscopy
The adsorption of Au(III), Pt(IV) and Pd(II) onto glycine modified crosslinked chitosan resin (GMCCR) has been investigated. The parameters studied include the effects of pH, contact time, ionic strength and the initial metal ion concentrations by batch method. The optimal pH for the adsorption of Au(III), Pt(IV) and Pd(II) was found to range from 1.0 to 4.0 and the maximum uptake was obtained at pH 2.0 for Au(III), Pt(IV) and Pd(II). The results obtained from equilibrium adsorption studies are fitted in various adsorption models such as Langmuir and Freundlich and the model parameters have been evaluated. The maximum adsorption capacity of GMCCR for Au(III), Pt(IV) and Pd(II) was found to be 169.98, 122.47 and 120.39mg/g, respectively. The kinetic data was tested using pseudo-first-order and pseudo-second-order kinetic models and an intraparticle diffusion model. The correlation results suggested that the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Au(III), Pt(IV) and Pd(II) onto GMCCR. Various concentrations of HCl, thiourea and thiourea-HCl solutions were used to desorb the adsorbed precious metal ions from GMCCR. It was found that 0.7M thiourea-2M HCl solution provided effectiveness of the desorption of Au(III), Pt(IV) and Pd(II) from GMCCR. The modification of glycine on crosslinked chitosan resin (CCR) was studied by Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM).