PubAg

Main content area

Proteomic profiling reveals dopaminergic regulation of progenitor cell functions of goldfish radial glial cells in vitro

Author:
Xing, Lei, Martyniuk, Christopher J., Esau, Crystal, Da Fonte, Dillon F., Trudeau, Vance L.
Source:
Journal of proteomics 2016 v.144 pp. 123-132
ISSN:
1874-3919
Subject:
Western blotting, actin, adenosine monophosphate, adenosine triphosphate, adults, agonists, biomarkers, brain, calcium, cell cycle, cyclic AMP, dopamine, dopamine receptors, estrogen receptors, females, glucose, goldfish, hormones, muscles, neurogenesis, neuroglia, neurons, neurotransmitters, phosphoglycerate dehydrogenase, protein synthesis, proteome, proteomics, quantitative polymerase chain reaction, signal transduction, stem cells, steroids, triose-phosphate isomerase
Abstract:
Radial glial cells (RGCs) are stem-like cells found in the developing and adult central nervous system. They function as both a scaffold to guide neuron migration and as progenitor cells that support neurogenesis. Our previous study revealed a close anatomical relationship between dopamine neurons and RGCs in the telencephalon of female goldfish. In this study, label-free proteomics was used to identify the proteins in a primary RGC culture and to determine the proteome response to the selective dopamine D1 receptor agonist SKF 38393 (10μM), in order to better understand dopaminergic regulation of RGCs. A total of 689 unique proteins were identified in the RGCs and these were classified into biological and pathological pathways. Proteins such as nucleolin (6.9-fold) and ependymin related protein 1 (4.9-fold) were increased in abundance while proteins triosephosphate isomerase (10-fold) and phosphoglycerate dehydrogenase (5-fold) were decreased in abundance. Pathway analysis revealed that proteins that consistently changed in abundance across biological replicates were related to small molecules such as ATP, lipids and steroids, hormones, glucose, cyclic AMP and Ca²⁺. Sub-network enrichment analysis suggested that estrogen receptor signaling, among other transcription factors, is regulated by D1 receptor activation. This suggests that these signaling pathways are correlated to dopaminergic regulation of radial glial cell functions. Most proteins down-regulated by SKF 38393 were involved in cell cycle/proliferation, growth, death, and survival, which suggests that dopamine inhibits the progenitor-related processes of radial glial cells. Examples of differently expressed proteins including triosephosphate isomerase, nucleolin, phosphoglycerate dehydrogenase and capping protein (actin filament) muscle Z-line beta were validated by qPCR and western blot, which were consistent with MS/MS data in the direction of change. This is the first study to characterize the RGC proteome on a large scale in a vertebrate species. These data provide novel insight into glial protein networks that are associated with neuroendocrine function and neurogenesis in the teleost brain.While the role of radial glial cells in organizing brain structure and neurogenesis has been well studied, protein profiling experiments in this unique cell type has not been conducted. This study is the first to profile the proteome of goldfish radial glial cells in culture and to study the regulation of progenitor functions of radial glial cells by the neurotransmitter dopamine. This study provides the foundation for molecular network analysis in fish radial glial cells, and identifies cellular processes and signaling pathways in these cells with roles in neurogenesis and neuroendocrine function. Lastly, this study begins to characterize signatures and biomarkers for specific neuroendocrine and neurogenesis disruptors.
Agid:
5306964