Main content area

Mining the physical infrastructure: Opportunities, barriers and interventions in promoting structural components reuse

Iacovidou, Eleni, Purnell, Phil
The Science of the total environment 2016 v.557-558 pp. 791-807
business development, business enterprises, carbon, construction materials, contractors, decision making, education, emissions, energy, infrastructure, mining, models, recycling, social benefit, wastes
Construction is the most resource intensive sector in the world. It consumes more than half of the total global resources; it is responsible for more than a third of the total global energy use and associated emissions; and generates the greatest and most voluminous waste stream globally. Reuse is considered to be a material and carbon saving practice highly recommended in the construction sector as it can address both waste and carbon emission regulatory targets. This practice offers the possibility to conserve resources through the reclamation of structural components and the carbon embedded in them, as well as opportunities for the development of new business models and the creation of environmental, economic, technical and social value. This paper focuses on the identification and analysis of existing interventions that can promote the reuse of construction components, and outlines the barriers and opportunities arising from this practice as depicted from the global literature. The main conclusions that derive from this study are that the combination of incentives that promote reuse of construction components and recycling of the rest of the construction materials with the provision of specialised education, skills and training would transform the way construction sector currently operates and create opportunities for new business development. Moreover, a typology system developed based on the properties and lifetime of construction components is required in order to provide transparency and guidance in the way construction components are used and reused, in order to make them readily available to designers and contractors. Smart technologies carry the potential to aid the development and uptake of this system by enabling efficient tracking, storage and archiving, while providing information relevant to the environmental and economic savings that can be regained, enabling also better decision-making during construction and deconstruction works. However, further research is required in order to investigate the opportunities and constraints of the use of these technologies.