PubAg

Main content area

On the role of mid-infrared predicted phenotypes in fertility and health dairy breeding programs1

Author:
Bastin, C., Théron, L., Lainé, A., Gengler, N.
Source:
Journal of dairy science 2016 v.99 no.5 pp. 4080-4094
ISSN:
0022-0302
Subject:
3-hydroxybutyric acid, acetone, breeding, casein, dairy cows, disease resistance, energy balance, fat body, fatty acid composition, genetic improvement, genetic merit, genetic relationships, ketone bodies, ketosis, lactation, lactoferrin, mastitis, milk, milk analysis, minerals, phenotype, physiological state, prediction, spectroscopy, urea
Abstract:
Fertility and health traits are of prime importance in dairy breeding programs. However, these traits are generally complex, difficult to record, and lowly heritable (<0.10), thereby hampering genetic improvement in disease resistance and fertility. Hence, indicators are useful in the prediction of genetic merit for fertility and health traits as long as they are easier to measure than direct fitness traits, heritable, and genetically correlated. Considering that changes in (fine) milk composition over a lactation reflect the physiological status of the cow, mid-infrared (MIR) analysis of milk opens the door to a wide range of potential indicator traits of fertility and health. Previous studies investigated the phenotypic and genetic relationships between fertility and MIR-predicted phenotypes, most being related to negative postpartum energy balance and body fat mobilization (e.g., fat:protein ratio, urea, fatty acids profile). Results showed that a combination of various fatty acid traits (e.g., C18:1 cis-9 and C10:0) could be used to improve fertility. Furthermore, occurrence of (sub)clinical ketosis has been related to milk-based phenotypes such as fat:protein ratio, fatty acids, and ketone bodies. Hence, MIR-predicted acetone and β-hydroxybutyrate contents in milk could be useful for breeding cows less susceptible to ketosis. Although studies investigating the genetic association among mastitis and MIR-predicted phenotypes are scarce, a wide range of traits, potentially predicted by MIR spectrometry, are worthy of consideration. These include traits related to the disease response of the cow (e.g., lactoferrin), reduced secretory activity (e.g., casein), and the alteration of the blood-milk barrier (e.g., minerals). Moreover, direct MIR prediction of fertility and health traits should be further considered. To conclude, MIR-predicted phenotypes have a role to play in the improvement of dairy cow fertility and health. However, further studies are warranted to (1) grasp underlying associations among MIR-predicted indicator and fitness traits, (2) estimate the genetic parameters, and (3) include these traits in broader breeding strategies.
Agid:
5318355