Main content area

Localization and quantitation of macrophages, mast cells, and eosinophils in the developing bovine mammary gland1

Beaudry, K.L., Parsons, C.L.M., Ellis, S.E., Akers, R.M.
Journal of dairy science 2016 v.99 no.1 pp. 796-804
age, animal ovaries, calves, eosinophils, epithelium, fluorescent antibody technique, heifers, macrophages, mammary development, mammary glands, mast cells, mice, ontogeny, ovariectomy, physiological state, staining
Prepubertal mammary development involves elongation and branching of ducts and stromal tissue remodeling. This process is highly regulated and in mice is known to be affected by the presence of innate immune cells. Whether or not such immune cells are present or involved in bovine mammary development is unknown. For the first time, we determined the presence, location (relative to mammary ductal structures), and changes in numbers of eosinophils, mast cells, and macrophages in prepubertal bovine mammary tissue, and evaluated the effects of age, ovariectomy, and exogenous estrogen on numbers of each cell type. Chemical stains and immunofluorescence were used to identify the 3 cell types in formalin-fixed, paraffin-embedded mammary tissue from prepubertal female calves from 3 archived tissue sets. The ontogeny tissue set included samples of mammary tissue from female calves (n=4/wk) from birth to 6 wk of age. The ovary tissue set contained samples from ovary intact and ovariectomized heifers allowing us to investigate the influence of the ovaries on immune cells in the developing mammary gland in prepubertal heifers. Nineteen animals were intact or ovariectomized 30 d before sampling; they were 90, 120, or 150 d old at the time of sampling. A third tissue set, the estrogen set, allowed us to determine the effect of exogenous estrogen on innate immune cells in the gland. Eosinophils were identified via Luna staining, mast cells by May–Grunwald Giemsa staining, and macrophages with immunofluorescence. Key findings were that more eosinophils and mast cells were observed in near versus far stroma in the ontogeny and ovary tissue sets but not estrogen. More macrophages were observed in near versus far stroma in ontogeny animals. Eosinophils were more abundant in the younger animals, and fewer macrophages tended to be observed in ovariectomized heifers as compared with intact heifers and estrogen treatment resulted in a reduction in cell numbers. In summary, we show for the first time that innate immune cells are present in prepubertal bovine mammary tissue, localization varies by immune cell type, and abundance is related to proximity of epithelial structures and physiological state. We suggest a likely role for these cells in control of bovine mammary growth and ductal development.