U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Simulating diverse native C4 perennial grasses with varying rainfall

Author:
Sumin Kim, Amber Williams, James R. Kiniry, Christine V. Hawkes
Source:
Journal of arid environments 2016 v.134 pp. 97-103
ISSN:
0140-1963
Subject:
climate change, dry environmental conditions, forage grasses, growth and development, perennials, rain, range management, rangelands, simulation models, soil types
Abstract:
Rainfall is recognized as a major factor affecting the rate of plant growth development. The impact of changes in amount and variability of rainfall on growth and production of different forage grasses needs to be quantified to determine how climate change can impact rangelands. Comparative studies to evaluate the growth of several perennial forage species at different rainfall rates will provide useful information by identifying forage management strategies under various rainfall scenarios. In this study, the combination of rainfall changes and soil types on the plant growth of 10 perennial forage species was investigated with both the experimental methods, using rainout shelters, and with the numerical methods using the plant growth simulation model, ALMANAC. Overall, most species significantly increased basal diameter and height as rainfall increased. Like measured volume, simulated yields for all species generally increased as rainfall increased. But, large volume and yield increases were only observed between 350 and 850 mm/yr. Simulating all species growing together competing agrees relatively well with observed plant volumes at low rainfall treatment, while simulating all species growing separately was slightly biased towards overestimation on low rainfall effect. Both simulations agree relatively well with observed plant volume at high rainfall treatment.
Agid:
5321006
Handle:
10113/5321006