PubAg

Main content area

Class I Hydrophobin Vmh2 Adopts Atypical Mechanisms to Self-Assemble into Functional Amyloid Fibrils

Author:
Gravagnuolo, Alfredo Maria, Longobardi, Sara, Luchini, Alessandra, Appavou, Marie-Sousai, De Stefano, Luca, Notomista, Eugenio, Paduano, Luigi, Giardina, Paola
Source:
Biomacromolecules 2016 v.17 no.3 pp. 954-964
ISSN:
1526-4602
Subject:
Pleurotus ostreatus, amyloid, aqueous solutions, calcium, circular dichroism spectroscopy, fluorescence, fungi, hydrophobins, ions, light scattering, models, pH, solubilization, temperature, transmission electron microscopy
Abstract:
Hydrophobins are fungal proteins whose functions are mainly based on their capability to self-assemble into amphiphilic films at hydrophobic–hydrophilic interfaces (HHI). It is widely accepted that class I hydrophobins form amyloid-like structures, named rodlets, which are hundreds of nanometers long, packed into ordered lateral assemblies and do not exhibit an overall helical structure. We studied the self-assembly of the Class I hydrophobin Vmh2 from Pleurotus ostreatus in aqueous solutions by dynamic light scattering (DLS), thioflavin T (ThT), fluorescence assay, circular dichroism (CD), cryogenic trasmission electron microscopy (cryo-TEM), and TEM. Vmh2 does not form fibrillar aggregates at HHI. It exhibits spherical and fibrillar assemblies whose ratio depends on the protein concentration when freshly solubilized at pH ≥ 7. Moreover, it spontaneously self-assembles into isolated, micrometer long, and twisted amyloid fibrils, observed for the first time in fungal hydrophobins. This process is promoted by acidic pH, temperature, and Ca²⁺ ions. A model of self-assembly into amyloid-like structures has been proposed.
Agid:
5334118