Main content area

Acute and subchronic toxic effects of atrazine and chlorpyrifos on common carp (Cyprinus carpio L.): Immunotoxicity assessments

Xing, Houjuan, Liu, Tao, Zhang, Ziwei, Wang, Xiaolong, Xu, Shiwen
Fish & shellfish immunology 2015 v.45 no.2 pp. 327-333
Cyprinus carpio, acute toxicity, atrazine, chlorpyrifos, fish, genes, immune response, immunotoxicity, kidneys, messenger RNA, spleen, subacute toxicity, subchronic toxicity, swimming, toxicity testing
Atrazine (ATR) and chlorpyrifos (CPF) are widely used pesticides in agricultural practices throughout world. It has resulted in a series of toxicological and environmental problems, such as impacts on many non-target aquatic species, including fish. The spleen and head kidney in the bony fish are the major hematopoietic organs, and play a crucial part in immune responses. This study evaluated the subchronic effects of ATR and CPF on the mRNA and protein levels of HSP60, HSP70 and HSP90 in the immune organs of common carp and compared the acute and subchronic effects of ATR and CPF on the swimming speed (SS) of common carp. The results of acute toxicity tests showed that the 96 h-LC50 of ATR and CPF for common carp was determined to be 2.142 and 0.582 mg/L, respectively. Meanwhile, acute and subacute toxicity of ATR and CPF in common carp resulted in hypoactivity. We also found that the mRNA and protein levels of HSP60, HSP70 and HSP90 genes were induced in the spleen and head kidney of common carp exposed to ATR and CPF in the subchronic toxicity test. Our results indicate that ATR and CPF are highly toxic to common carp, and hypoactivity in common carp by acute and subchronic toxicity of ATR and CPF may provide a useful tool for assessing the toxicity of triazine herbicide and organophosphorous pesticides to aquatic organisms. In addition, the results from the subchronic toxicity test exhibited that increasing concentration of ATR and CPF in the environment causes considerable stress for common carp, suggesting that ATR and CPF exposure cause immunotoxicity to common carp.