Main content area

Adsorptive Removal of Saturated and Unsaturated Fatty Acids Using Ion-Exchange Resins

Maddikeri, Ganesh L., Pandit, Aniruddha B., Gogate, Parag R.
Industrial & Engineering Chemistry Research 2012 v.51 no.19 pp. 6869-6876
adsorption, anion exchange resins, benzene, biodiesel, composite polymers, engineering, fatty acid composition, fatty acids, free fatty acids, heat production, ion exchange, liquids, moieties, raw materials, temperature, vegetable oil
One of the pretreatment approaches for decreasing the initial acid content of waste vegetable oil or nonedible oils with high initial free fatty acid content, with an objective of obtaining a suitable starting raw material for the production of biodiesel, is the adsorption of the free acids using ion-exchange resins. The present work deals with investigation of adsorption characteristics of saturated (stearic) and unsaturated (oleic) fatty acids on different ion exchange resins (polymeric strong (Indion 810) and weak (Indion 850 and Indion 860) anion exchange resins). The ion exchange resins contain tertiary or quaternary amino functional groups on the styrene-divinyl benzene copolymer matrix which can facilitate the adsorption of acids. Kinetic adsorption studies have been carried out initially to determine the contact time required to reach the adsorption equilibrium between fatty acid adsorbed on the resin and remaining fatty acid present in the oil. Equilibrium adsorption studies have been carried out at different temperatures viz. 293, 303, and 313 K. It has been observed that adsorption of saturated and unsaturated fatty acids increased with its concentration in the liquid at constant temperature and decreased with an increase in the temperature at constant concentration. Also, the adsorption equilibrium data have been found to be well described by the Freundlich type isotherm. The negative values of ΔG and ΔH showed that the adsorption of both saturated and unsaturated acids on the ion exchange resins was spontaneous and also exothermic.