PubAg

Main content area

Genetic parameters of cheese yield and curd nutrient recovery or whey loss traits predicted using Fourier-transform infrared spectroscopy of samples collected during milk recording on Holstein, Brown Swiss, and Simmental dairy cows

Author:
Cecchinato, A., Albera, A., Cipolat-Gotet, C., Ferragina, A., Bittante, G.
Source:
Journal of dairy science 2015 v.98 no.7 pp. 4914-4927
ISSN:
0022-0302
Subject:
Brown Swiss, Fourier transform infrared spectroscopy, Holstein, Simmental, animal models, breeding, covariance, dairy cows, dairy industry, dairy protein, energy, equations, fresh cheeses, genetic relationships, genetic variation, herds, heritability, milk, milk composition, milk production, protein content, total solids, variance, whey
Abstract:
Cheese yield is the most important technological parameter in the dairy industry in many countries. The aim of this study was to infer (co)variance components for cheese yields (CY) and nutrient recoveries in curd (REC) predicted using Fourier-transform infrared (FTIR) spectroscopy of samples collected during milk recording on Holstein, Brown Swiss, and Simmental dairy cows. A total of 311,354 FTIR spectra representing the test-day records of 29,208 dairy cows (Holstein, Brown Swiss, and Simmental) from 654 herds, collected over a 3-yr period, were available for the study. The traits of interest for each cow consisted of 3 cheese yield traits (%CY: fresh curd, curd total solids, and curd water as a percent of the weight of the processed milk), 4 curd nutrient recovery traits (REC: fat, protein, total solids, and the energy of the curd as a percent of the same nutrient in the processed milk), and 3 daily cheese production traits (daily fresh curd, total solids, and the water of the curd per cow). Calibration equations (freely available upon request to the corresponding author) were used to predict individual test-day observations for these traits. The (co)variance components were estimated for the CY, REC, milk production, and milk composition traits via a set of 4-trait analyses within each breed. All analyses were performed using REML and linear animal models. The heritabilities of the %CY were always higher for Holstein and Brown Swiss cows (0.22 to 0.33) compared with Simmental cows (0.14 to 0.18). In general, the fresh cheese yield (%CYCURD) showed genetic variation and heritability estimates that were slightly higher than those of its components, %CYSOLIDS and %CYWATER. The parameter RECPROTEIN was the most heritable trait in all the 3 breeds, with values ranging from 0.32 to 0.41. Our estimation of the genetic relationships of the CY and REC with milk production and composition revealed that the current selection strategies used in dairy cattle are expected to exert only limited effects on the REC traits. Instead, breeders may be able to exploit genetic variations in the %CY, particularly RECFAT and RECPROTEIN. This last component is not explained by the milk protein content, suggesting that its direct selection could be beneficial for cheese production aptitude. Collectively, our findings indicate that breeding strategies aimed at enhancing CY and REC could be easily and rapidly implemented for dairy cattle populations in which FTIR spectra are routinely acquired from individual milk samples.
Agid:
5395765