Main content area

Relationship between soil erodibility and modeled infiltration rate in different soils

Wang, Guoqiang, Fang, Qingqing, Wu, Binbin, Yang, Huicai, Xu, Zongxue
Journal of hydrology 2015 v.528 pp. 408-418
Universal Soil Loss Equation, agricultural soils, composts, erodibility, infiltration rate, poultry, runoff, sediment yield, soil amendments, soil erosion
The relationship between soil erodibility, which is hard to measure, and modeled infiltration rate were rarely researched. Here, the soil erodibility factors (K and Ke in the USLE, Ki and K1 in the WEPP) were calculated and the infiltration rates were modeled based on the designed laboratory simulation experiments and proposed infiltration model, in order to build their relationship. The impacts of compost amendment on the soil erosion characteristics and relationship were also studied. Two contrasting agricultural soils (bare and cultivated fluvo-aquic soils) were used, and different poultry compost contents (control, low and high) were applied to both soils. The results indicated that the runoff rate, sediment yield rate and soil erodibility of the bare soil treatments were generally higher than those of the corresponding cultivated soil treatments. The application of composts generally decreased sediment yield and soil erodibility but did not always decrease runoff. The comparison of measured and modeled infiltration rates indicated that the model represented the infiltration processes well with an N–S coefficient of 0.84 for overall treatments. Significant negative logarithmic correlations have been found between final infiltration rate (FIR) and the four soil erodibility factors, and the relationship between USLE-K and FIR demonstrated the best correlation. The application of poultry composts would not influence the logarithmic relationship between FIR and soil erodibility. Our study provided a useful tool to estimate soil erodibility.