Main content area

M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal–Organic Frameworks Exhibiting Increased Charge Density and Enhanced H2 Binding at the Open Metal Sites

Kapelewski, Matthew T., Geier, Stephen J., Hudson, Matthew R., Stück, David, Mason, Jarad A., Nelson, Jocienne N., Xiao, Dianne J., Hulvey, Zeric, Gilmour, Elizabeth, FitzGerald, Stephen A., Head-Gordon, Martin, Brown, Craig M., Long, Jeffrey R.
Journal of the American Chemical Society 2014 v.136 no.34 pp. 12119-12129
X-radiation, cations, cobalt, coordination polymers, enthalpy, hydrogen, infrared spectroscopy, iron, isomers, ligands, magnesium, manganese, neutrons, new family, nickel, resorcinol
The well-known frameworks of the type M₂(dobdc) (dobdc⁴– = 2,5-dioxido-1,4-benzenedicarboxylate) have numerous potential applications in gas storage and separations, owing to their exceptionally high concentration of coordinatively unsaturated metal surface sites, which can interact strongly with small gas molecules such as H₂. Employing a related meta-functionalized linker that is readily obtained from resorcinol, we now report a family of structural isomers of this framework, M₂(m-dobdc) (M = Mg, Mn, Fe, Co, Ni; m-dobdc⁴– = 4,6-dioxido-1,3-benzenedicarboxylate), featuring exposed M²⁺ cation sites with a higher apparent charge density. The regioisomeric linker alters the symmetry of the ligand field at the metal sites, leading to increases of 0.4–1.5 kJ/mol in the H₂ binding enthalpies relative to M₂(dobdc). A variety of techniques, including powder X-ray and neutron diffraction, inelastic neutron scattering, infrared spectroscopy, and first-principles electronic structure calculations, are applied in elucidating how these subtle structural and electronic differences give rise to such increases. Importantly, similar enhancements can be anticipated for the gas storage and separation properties of this new family of robust and potentially inexpensive metal–organic frameworks.