Main content area

Oxygenated monoterpenes citral and carvacrol cause oxidative damage in Escherichia coli without the involvement of tricarboxylic acid cycle and Fenton reaction

Chueca, Beatriz, Pagán, Rafael, García-Gonzalo, Diego
International journal of food microbiology 2014 v.189 pp. 126-131
DNA damage, Escherichia coli, NAD (coenzyme), aerobic conditions, anaerobiosis, anti-infective properties, antibiotics, carvacrol, cell death, citral, death, drugs, essential oils, hydroxyl radicals, mutants, thiourea, tricarboxylic acid cycle
Oxygenated monoterpenes citral and carvacrol are common constituents of many essential oils (EOs) that have been extensively studied as antimicrobial agents but whose mechanisms of microbial inactivation have not been totally elucidated. A recent study described a mechanism of Escherichia coli death for (+)-limonene, a hydrocarbon monoterpene also frequently present in EOs, similar to the common mechanism proposed for bactericidal antibiotics. This mechanism involves the formation of Fenton-mediated hydroxyl radical, a reactive oxygen species (ROS), via tricarboxylic acid (TCA) cycle, which would ultimately inactivate cells. Our objective was to determine whether E. coli MG1655 inactivation by citral and carvacrol follows a similar mechanism of cell death.Challenging experiments with 300μL/L citral and 100μL/L carvacrol inactivated at least 2.5log10cycles of exponentially growing cells in 3h under aerobic conditions. The presence of thiourea (an ROS scavenger) reduced cell inactivation in 2log10cycles, demonstrating the role of ROS in cell death. Decreased resistance of a ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) indicated that citral and carvacrol caused oxidative damage to DNA. Although the mechanism of E. coli inactivation by carvacrol and citral was similarly mediated by ROS, their formation did not follow the same pathways described for (+)-limonene and bactericidal drugs because neither Fenton reaction nor NADH production via the TCA cycle was involved in cell death. Moreover, further experiments demonstrated antimicrobial activity of citral and carvacrol in anaerobic environments without the involvement of ROS. As a consequence, cell death by carvacrol and citral in anaerobiosis follows a different mechanism than that observed under aerobic conditions.These results demonstrated a different mechanism of inactivation by citral and carvacrol with regard to (+)-limonene and bactericidal antibiotics, indicating the complexity of the mechanisms of bacterial inactivation among EO constituents. Advancements in the description of these mechanisms will help in extending and improving the use of these compounds as natural antimicrobials.