Main content area

Polysaccharide deposition during cytokinesis: Challenges and future perspectives

Drakakaki, Georgia
Plant science 2015 v.236 pp. 177-184
antibodies, callose, cell walls, cellulose, cytokinesis, developmental stages, genomics, hemicellulose, image analysis, models, pectins, proteomics, secretory granules, structural proteins
De novo formation of a new cell wall partitions the cytoplasm of the dividing cell during plant cytokinesis. The development of the cell plate, a transient sheet-like structure, requires the accumulation of vesicles directed by the phragmoplast to the cell plate assembly matrix. Fusion and fission of the accumulated vesicles are accompanied by the deposition of polysaccharides and cell wall structural proteins; together, they are leading to the stabilization of the formed structure which after insertion into the parental wall lead to the maturation of the nascent cross wall. Callose is the most abundant polysaccharide during cell plate formation and during maturation is gradually replaced by cellulose. Matrix polysaccharides such as hemicellulose, and pectins presumably are present throughout all developmental stages, being delivered to the cell plate by secretory vesicles. The availability of novel chemical probes such as endosidin 7, which inhibits callose formation at the cell plate, has proved useful for dissecting the temporal accumulation of vesicles at the cell plate and establishing the critical role of callose during cytokinesis. The use of emerging approaches such as chemical genomics combined with live cell imaging; novel techniques of polysaccharide detection including tagged polysaccharide substrates, newly characterized polysaccharide antibodies and vesicle proteomics can be used to develop a comprehensive model of cell plate development.