U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Comparison of ribotyping and sequence-based typing for discriminating among isolates of Bordetella bronchiseptica

Karen B. Register, Tracy L. Nicholson, Brian W. Brunelle
Journal of Microbiological Methods 2016 v.129 no. pp. 117-126
Bordetella bronchiseptica, DNA fingerprinting, birds, genes, genotyping, hosts, mammals, molecular epidemiology, population structure, ribotypes, sequence analysis, Australia, Europe, Israel, United States
PvuII ribotyping and MLST are each highly discriminatory methods for genotyping Bordetella bronchiseptica, but a direct comparison between these approaches has not been undertaken. The goal of this study was to directly compare the discriminatory power of PvuII ribotyping and MLST, using a single set of geographically and genetically diverse strains, and to determine whether subtyping based on repeat region sequences of the pertactin gene (prn) provides additional resolution. One hundred twenty-two isolates were analyzed, representing 11 mammalian or avian hosts, sourced from the United States, Europe, Israel and Australia. Thirty-two ribotype patterns were identified; one isolate could not be typed. In comparison, all isolates were typeable by MLST and a total of 30 sequence types was identified. An analysis based on Simpson's Index of Diversity (SID) revealed that ribotyping and MLST are nearly equally discriminatory, with SIDs of 0.920 for ribotyping and 0.919 for MLST. Nonetheless, for ten ribotypes and eight MLST sequence types, the alternative method discriminates among isolates that otherwise type identically. Pairing prn repeat region typing with ribotyping yielded 54 genotypes and increased the SID to 0.954. Repeat region typing combined with MLST resulted in 47 genotypes and an SID of 0.944. Given the technical and practical advantages of MLST over ribotyping, and the nominal difference in their SIDs, we conclude MLST is the preferred primary typing tool. We recommend the combination of MLST and prn repeat region typing as a high-resolution, objective and standardized approach valuable for investigating the population structure and epidemiology of B. bronchiseptica.