U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Exotic weevil invasion increases floral herbivore community density, function, and impact on a native plant

Tatyana A. Rand, Svata M. Louda
Oikos 2012 v.121 no.1 pp. 85-94
Cirsium, Diptera, Pyralidae, Rhinocyllus conicus, herbivores, indigenous species, invasive species, moths, population density, seed productivity, seeds
Consumer communities are being re‐arranged through unprecedented rates of human‐mediated invasions and extinctions. Such changes in consumer diversity potentially alter community function and impact on resource populations. Although insect herbivore invasions are increasingly common, the influence of such species additions on native resident herbivore guilds, along with their individual and combined effects on native plant resources, are rarely investigated. Here, we used site‐to‐site and plant‐to‐plant variation in herbivore composition to examine how the addition of an invasive exotic weevil, Rhinocyllus conicus, combines with a guild of native floral herbivores (tephritid flies, pyralid moths) to influence two key components of herbivore community function – aggregate herbivore densities and cumulative levels of seed destruction – on a native thistle, Cirsium canescens. Invasion of a site by R. conicus more than doubled aggregate herbivore density, resulting in increased levels of seed destruction and a halving of seed production by the native thistle. Further, herbivore function was significantly higher on individual plants attacked by R. conicus, compared to plants attacked only by native herbivores. Insect densities and levels of seed destruction on plants attacked by multiple herbivore taxa never exceeded those observed for plants attacked by R. conicus alone, suggesting that increases in herbivore community function with invasion resulted from the inclusion of a functionally dominant insect rather than any complementarity effects. Some evidence for interference between insects emerged, with a trend towards reduced moth and weevil densities in two and three taxon mixtures compared with plants attacked by each taxon alone. However, density compensation was limited so that, overall, the addition of a novel herbivore to the floral guild was associated with a significant increase in herbivore community function and impact on seed production. The results suggest that invasion of a functionally dominant herbivore into an unsaturated recipient community can augment function within a resource guild.