Main content area

Jararhagin-induced mechanical hyperalgesia depends on TNF-α, IL-1β and NFκB in mice

Ferraz, Camila R., Calixto-Campos, Cássia, Manchope, Marília F., Casagrande, Rubia, Clissa, Patrícia B., Baldo, Cristiani, Verri, Waldiceu A.
Toxicon 2015 v.103 pp. 119-128
Bothrops jararaca, interleukin-1beta, metalloproteinases, mice, morphine, pain, snakes, somatosensory disorders, transcription factor NF-kappa B, tumor necrosis factor-alpha, venoms
Jararhagin is a hemorrhagic metalloprotease from Bothrops jararaca snake venom. The hyperalgesic mechanisms of jararhagin were investigated focusing on the role of proinflammatory cytokines (TNF-α and IL-1β) and the transcription factor NFκB. Intraplantar administration of jararhagin (1, 10, 100 and 1000 ng/paw) induced mechanical hyperalgesia, and increased TNF-α levels at 1, 3 and 5 h, and IL-1β levels at 0.5, 1 and 3 h after its injection in the paw tissue. Pre-treatment with morphine (2, 6, 12 μg/paw) inhibited jararhagin-induced mechanical hyperagesia. The systemic or local pre-treatment with etanercept (10 mg/kg and 100 μg/paw) and IL-1ra (30 mg/kg and 100 pg/paw) inhibited jararhagin-induced mechanical hyperalgesia. Co-administration of jararhagin (0.1 ng/paw) and TNF-α (0.1 pg/paw) or jararhagin (0.1 ng/paw) and IL-1β (1 pg/paw) enhanced the mechanical hyperalgesia. The systemic or local pre-treatment with PDTC (NFκB inhibitor; 100 mg/kg and 100 μg/paw) inhibited jararhagin-induced mechanical hyperalgesia as well as PDTC decreased the jararhagin-induced production of TNF-α and IL-1β. Thus, these data demonstrate the involvement of pro-inflammatory cytokines TNF-α and IL-1β and nuclear transcription factor NFκB in jararhagin-induced mechanical hyperalgesia indicating that targeting these mechanisms might contribute to reduce the pain induced by B. jararaca snake venom.