U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage

Author:
Xiaoxia Wang, Shuying Wang, Tonglai Xue, Baikun Li, Xian Dai, Yongzhen Peng
Source:
Water research 2015 v.77 pp. 191-200
ISSN:
0043-1354
Subject:
aeration, carbon, carbon nitrogen ratio, carbon sequestration, chemical oxygen demand, denitrification, dissolved oxygen, energy, glycogen, microbial communities, nitrification, nitrogen, nitrogen content, organic matter, oxygen, phosphorus, sludge, wastewater, wastewater treatment
Abstract:
A novel simultaneous nitrification denitrification and phosphorous removal-sequencing batch reactor (SNDPR-SBR) enriched with PAOs (phosphorus accumulating organisms), DPAOs (denitrifying PAOs), and GAOs (glycogen accumulating organisms) at the ratio of 2:1:1 was developed to achieve the simultaneous nutrient and carbon removal treating domestic wastewater with low carbon/nitrogen ratio (≤3.5). The SNDPR system was operated for 120 days at extended anaerobic stage (3 h) and short aerobic stage at low oxygen concentration (2.5 h) with short sludge retention time (SRT) of 10.9 d and hydraulic retention time (HRT) of 14.6 h. The results showed that at the stable operating stage, the average effluent chemical oxygen demand (COD) and PO43−–P concentrations were 47.2 and 0.2 mg L−1, respectively, the total nitrogen (TN) removal efficiency was 77.7%, and the SND efficiency reached 49.3%. Extended anaerobic stage strengthened the intracellular carbon (mainly poly-β-hydroxybutyrate, PHB) storage, efficiently utilized the organic substances in wastewater, and provided sufficient carbon sources for denitrification and phosphorus uptake without external carbon addition. Short aerobic stage at low oxygen concentration (dissolved oxygen (DO): 1 ± 0.3 mg L−1) achieved a concurrence of nitrification, endogenous denitrification, denitrifying and aerobic phosphorus uptake, and saved about 65% energy consumption for aeration. Microbial community analysis demonstrated that P removal was mainly performed by aerobic PAOs while N removal was mainly carried out by denitrifying GAOs (DGAOs), even though DPAOs were also participated in both N and P removal.
Agid:
5452331