Main content area

Bovine Type III Interferon Significantly Delays and Reduces the Severity of Foot-and-Mouth Disease in Cattle

Perez-Martin, Eva, Weiss, Marcelo, Diaz-San Segundo, Fayna, Pacheco, Juan M., Arzt, Jonathan, Grubman, Marvin J., de los Santos, Teresa
Journal of virology 2012 v.86 no.8 pp. 4477
Foot-and-mouth disease virus, Human adenovirus C, antiviral properties, cattle, cattle diseases, cell culture, chickens, disease severity, foot-and-mouth disease, gene expression, humans, immune response, interferons, mice, new family, shedding, swine, viremia
Interferons (IFNs) are the first line of defense against viral infections. Although type I and II IFNs have proven effective to inhibit foot-and-mouth disease virus (FMDV) replication in swine, a similar approach had only limited efficacy in cattle. Recently, a new family of IFNs, type III IFN or IFN-λ, has been identified in human, mouse, chicken, and swine. We have identified bovine IFN-λ3 (boIFN-λ3), also known as interleukin 28B (IL-28B), and demonstrated that expression of this molecule using a recombinant replication-defective human adenovirus type 5 (Ad5) vector, Ad5-boIFN-λ3, exhibited antiviral activity against FMDV in bovine cell culture. Furthermore, inoculation of cattle with Ad5-boIFN-λ3 induced systemic antiviral activity and upregulation of IFN-stimulated gene expression in the upper respiratory airways and skin. In the present study, we demonstrated that disease could be delayed for at least 6 days when cattle were inoculated with Ad5-boIFN-λ3 and challenged 24 h later by intradermolingual inoculation with FMDV. Furthermore, the delay in the appearance of disease was significantly prolonged when treated cattle were challenged by aerosolization of FMDV, using a method that resembles the natural route of infection. No clinical signs of FMD, viremia, or viral shedding in nasal swabs was found in the Ad5-boIFN-λ3-treated animals for at least 9 days postchallenge. Our results indicate that boIFN-λ3 plays a critical role in the innate immune response of cattle against FMDV. To this end, this work represents the most successful biotherapeutic strategy so far tested to control FMDV in cattle.