Main content area

Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin

Meng, Jia, Yao, Peng, Bianchi, Thomas S., Li, Dong, Zhao, Bin, Xu, Bochao, Yu, Zhigang
The Science of the total environment 2015 v.517 pp. 22-30
El Nino, aluminum, anthropogenic activities, carbon, climate change, estuaries, floods, hypoxia, molybdenum, monsoon season, phosphorus, sediments, stable isotopes, surface area, watersheds, East China Sea
In this study, sediment grain size (MGS), specific surface area (SSA), total organic carbon (TOC) contents, C/N molar ratios, stable carbon isotope, and P species in a sediment core, collected from the East China Sea (ECS) inner-shelf were measured to explore the applicability of detrital phosphorus (De-P) as a potential indicator of past flooding events in the Changjiang River Basin (CRB). In particular, we examined the linkages between the evolution of floods with regional climate changes and anthropogenic activities in the CRB. Peaks of De-P concentrations in sediments corresponded well with the worst flooding events of the CRB over the past two centuries (e.g., 1850s, 1860s, 1900s, 1920s, 1950s, 1980s, and 2000s). Moreover, De-P also corresponded well with the extreme hypoxic events in 1981 and 1998 in the Changjiang Estuary as indicated by Mo/Al ratios, indicating potential linkages between De-P as a flooding proxy to flood-induced hypoxia events in this region. In addition, a robust relationship was found among De-P, the floods in 1950s, 1980s, and 2000s of the CRB, the intensive El Niño-Southern Oscillation (ENSO), the abnormally weak East Asian Summer Monsoon (EASM) and the warm phase of Pacific Decadal Oscillation (PDO), suggesting that De-P also provided insights to linkages between regional climate change and flooding events in this region.