Main content area

Water relations of cotton plants under nitrogen deficiency. IV. Leaf senescence during drought and its relation to stomatal closure

Radin, J.W.
Physiologia plantarum 1981 v.51 no.1 pp. 145
Gossypium hirsutum, abscisic acid, chlorophyll, cotton, drought, leaves, nitrogen, nutrient deficiencies, plant-water relations, plants, polyethylene glycol, protein depletion, senescence, stomata, stomatal movement, water potential, water stress
Nitrogen deficiency in cotton plants (Gossypium hirsutum L.) increased the threshold water potentials for both stomatal closure and leaf senescence (defined as loss of chlorophyll and protein) during drought. These studies attempted to answer two questions: (1) What is the basis for the N/water interaction on senescence? (2) Is there a direct relationship between stomatal closure and senescence? Young and old leaves from N-deficient and N-sufficient plants maintained their relative sensitivities to water stress when excised leaf discs were floated on solutions of polyethylene glycol in dim light. In this leaf disc system, both leaf aging and N deficiency increased the threshold water potential for senescence. Leaf aging and N deficiency also decreased the concentration of exogenous abscisic acid necessary to initiate senescence in discs. A role for cytokinins in controlling senescence could not be clearly shown. In young leaves of both N-deficient and N-sufficient plants, stomata closed at water potentials much higher than those causing senescence. During leaf aging, the water potentials causing senescence increased more than those causing stomatal closure. The two processes thus occurred at about the same potentials in the oldest leaves. These data argue against a general cause-and-effect relationship between stomatal closure and senescence. Rather, each process apparently responded independently to absicsic acid accumulated during drought.