Main content area

Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

Jin, Hao, Wang, Chao, Shi, Jiaqi, Chen, Lei
Journal of hazardous materials 2014 v.279 pp. 156-162
Photobacterium phosphoreum, bioluminescence, cadmium, energy, inhibitory concentration 50, models, quantitative structure-activity relationships, toxicity, van der Waals forces
The individual IC50 (the concentrations causing a 50% inhibition of bioluminescence after 15min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TUTotal. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (ELUMO). When combined with different concentrations of Cd, the toxicity was related to the energy difference (EHOMO−ELUMO) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.