U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Critical review: Microbially influenced corrosion of buried carbon steel pipes

K.M. Usher, A.H. Kaksonen, I. Cole, D. Marney
International Biodeterioration & Biodegradation 2014 v.93 pp. 84-106
acidity, aeration, biofilm, carbon, corrosion, electrons, enzymatic reactions, enzymes, industry, iron, microorganisms, oxidation, pipes, soil, steel, thermodynamics
External corrosion of buried carbon steel pipes is a problem of global proportions, affecting a wide range of industries and services. Many factors affect corrosion rates. Biofilms may secrete enzymes and compounds that attack metal, alter local acidity and create differential aeration and galvanic cells. An important consideration is that biofilm metabolisms and enzymatic reactions are constantly in flux, altering the impact of microorganisms on corrosion rates, and thermodynamic equilibrium is not reached. Recent research demonstrates that some anaerobic microorganisms catalyse the oxidation of metallic iron and directly consume the electrons, with serious consequences for corrosion. This review examines relationships between soil characteristics, microbiology and corrosion processes, focussing on the impacts of microorganisms on external corrosion of buried carbon steel pipes. Techniques for improving the understanding of microbially influenced corrosion are considered and critiqued, with the aim of assisting those who work in the area of corrosion mitigation.