PubAg

Main content area

Exposure to volatile organic compounds: Comparison among different transportation modes

Author:
Do, Duc Hoai, Van Langenhove, Herman, Chigbo, Stephen Izuchukwu, Amare, Abebech Nuguse, Demeestere, Kristof, Walgraeve, Christophe
Source:
Atmospheric environment 2014 v.94 pp. 53-62
ISSN:
1352-2310
Subject:
BTEX (benzene, toluene, ethylbenzene, xylene), atmospheric chemistry, benzene, desorption, fossil fuels, gas chromatography-mass spectrometry, oxygen, pollutants, public transportation, terpenoids, toluene, toxicity, volatile organic compounds, walking, Belgium
Abstract:
The increasing trend of promoting public transportation (bus tram, metro, train) and more environmental friendly and sustainable non fossil-fuel alternatives (walking, cycling etc) as substitutes for auto vehicles brings forward new questions with regard to pollutant levels to which commuters are exposed. In this study, three transportation modes (tram, auto vehicle and bicycle) are studied and concentration levels of 84 volatile organic compounds (VOCs) (hydrocarbons, aromatic hydrocarbons, oxygen containing hydrocarbons, terpenes and halogenated compounds) are measured along a route in the city of Ghent, Belgium. The concentration levels are obtained by active sampling on Tenax TA sorbent tubes followed by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) using deuterated toluene as an internal standard. The median total VOC concentrations for the tram mode (33 μg/m³) is 1.7 times higher than that of the bicycle mode (20 μg/m³) and 1.5 times higher than for the car mode (22 μg/m³). It is found that aromatic hydrocarbons account for a significant proportion in the total VOCs concentration (TVOCs) being as high as 41–57%, 59–72% and 58–72% for the tram, car and bicycle respectively. In all transportation modes, there was a high (r > 0.6) degree of correlation between BTEX compounds, isopropylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. When comparing time weighed average concentrations along a fixed route in Ghent, it is found that commuters using the tram mode experience the highest TVOCs concentration levels. However, next to the concentration level to which commuters are exposed, the physical activity level involving the mode of transportation is important to assess the exposure to toxic VOCs. It is proven that the commuter using a bicycle (4.3 ± 1.5 μg) inhales seven and nine times more benzene compared to the commuter using the car and tram respectively, when the same route is followed.
Agid:
5472425