Main content area

Estimation of loss of genetic diversity in modern Japanese cultivars by comparison of diverse genetic resources in Asian pear (Pyrus spp.)

Nishio, Sogo, Takada, Norio, Saito, Toshihiro, Yamamoto, Toshiya, Iketani, Hiroyuki
BMC genetics 2016 v.17 no.1 pp. 81
Pyrus, breeding programs, computer software, crossbreds, cultivars, fruit crops, fruit quality, genetic variation, genotyping, germplasm, heterozygosity, inbreeding, inbreeding depression, introgression, microsatellite repeats, new variety, parents, pears, temperate zones, texture
BACKGROUND: Pears (Pyrus spp.) are one of the most important fruit crops in temperate regions. Japanese pear breeding has been carried out for over 100 years, working to release new cultivars that have good fruit quality and other desirable traits. Local cultivar ‘Nijisseiki’ and its relatives, which have excellent fruit texture, have been repeatedly used as parents in the breeding program. This strategy has led to inbreeding within recent cultivars and selections. To avoid inbreeding depression, we need to clarify the degree of inbreeding among crossbred cultivars and to introgress genetic resources that are genetically different from modern cultivars and selections. The objective of the present study was to clarify the genetic relatedness between modern Japanese pear cultivars and diverse Asian pear genetic resources. RESULTS: We genotyped 207 diverse accessions by using 19 simple sequence repeat (SSR) markers. The heterozygosity and allelic richness of modern cultivars was obviously decreased compared with that of wild individuals, Chinese pear cultivars, and local cultivars. In analyses using Structure software, the 207 accessions were classified into four clusters (K = 4): one consisting primarily of wild individuals, one of Chinese pear cultivars, one of local cultivars from outside the Kanto region, and one containing both local cultivars from the Kanto region and crossbred cultivars. The results of principal coordinate analysis (PCoA) were similar to those from the Structure analysis. Wild individuals and Chinese pears appeared to be distinct from other groups, and crossbred cultivars became closer to ‘Nijisseiki’ as the year of release became more recent. CONCLUSIONS: Both Structure and PCoA results suggest that the modern Japanese pear cultivars are genetically close to local cultivars that originated in the Kanto region, and that the genotypes of the modern cultivars were markedly biased toward ‘Nijisseiki’. Introgression of germplasm from Chinese pear and wild individuals that are genetically different from modern cultivars seems to be key to broadening the genetic diversity of Japanese pear. The information obtained in this study will be useful for pear breeders and other fruit breeders who have observed inbreeding depression.