PubAg

Main content area

Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance

Author:
Hopper, Daniel W., Ghan, Ryan, Schlauch, Karen A., Cramer, Grant R.
Source:
BMC plant biology 2016 v.16 no.1 pp. 118
ISSN:
1471-2229
Subject:
Vitis, abscisic acid, analysis of variance, climate change, drought, drought tolerance, ethylene, food crops, gene expression regulation, genes, genotype, hormones, leaves, photosynthesis, physiological response, plant stress, rootstocks, signal transduction, sugars, time series analysis, transcription (genetics), transcription factors, transcriptomics
Abstract:
BACKGROUND: Grapevine is a major food crop that is affected by global climate change. Consistent with field studies, dehydration assays of grapevine leaves can reveal valuable information of the plant’s response at physiological, transcript, and protein levels. There are well-known differences in grapevine rootstocks responses to dehydration. We used time-series transcriptomic approaches combined with network analyses to elucidate and identify important physiological processes and network hubs that responded to dehydration in three different grapevine species differing in their drought tolerance. RESULTS: Transcriptomic analyses of the leaves of Cabernet Sauvignon, Riparia Gloire, and Ramsey were evaluated at different times during a 24-h controlled dehydration. Analysis of variance (ANOVA) revealed that approximately 11,000 transcripts changed significantly with respect to the genotype x treatment interaction term and approximately 6000 transcripts changed significantly according to the genotype x treatment x time interaction term indicating massive differential changes in gene expression over time. Standard analyses determined substantial effects on the transcript abundance of genes involved in the metabolism and signaling of two known plant stress hormones, abscisic acid (ABA) and ethylene. ABA and ethylene signaling maps were constructed and revealed specific changes in transcript abundance that were associated with the known drought tolerance of the genotypes including genes such as VviABI5, VviABF2, VviACS2, and VviWRKY22. Weighted-gene coexpression network analysis (WGCNA) confirmed these results. In particular, WGCNA identified 30 different modules, some of which had highly enriched gene ontology (GO) categories for photosynthesis, phenylpropanoid metabolism, ABA and ethylene signaling. The ABA signaling transcription factors, VviABI5 and VviABF2, were highly connected hubs in two modules, one being enriched in gaseous transport and the other in ethylene signaling. VviABI5 was distinctly correlated with an early response and high expression for the drought tolerant Ramsey and with little response from the drought sensitive Riparia Gloire. These ABA signaling transcription factors were highly connected to VviSnRK1 and other gene hubs associated with sugar, ethylene and ABA signaling. CONCLUSION: A leaf dehydration assay provided transcriptomic evidence for differential leaf responses to dehydration between genotypes differing in their drought tolerance. WGCNA proved to be a powerful network analysis approach; it identified 30 distinct modules (networks) with highly enriched GO categories and enabled the identification of gene hubs in these modules. Some of these genes were highly connected hubs in both the ABA and ethylene signaling pathways, supporting the hypothesis that there is substantial crosstalk between the two hormone pathways. This study identifies solid gene candidates for future investigations of drought tolerance in grapevine.
Agid:
5484747