Main content area

Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production

Wang, Ruifei, Unrean, Pornkamol, Franzén, Carl Johan
Biotechnology for biofuels 2016 v.9 no.1 pp. 88
bioreactors, biorefining, cellulose, enzymatic hydrolysis, enzymes, ethanol, ethanol production, feeding methods, fermentation, gravity, hydrolysis, kinetics, lignocellulose, mass transfer, mixing, process design, saccharification, solubilization, steam, sugars, viscosity, wheat straw, yeasts
BACKGROUND: High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. The fundamental challenges of such processes are related to the high viscosity and inhibitor contents of the medium. Poor mass transfer and inhibition of the yeast lead to decreased ethanol yield, titre and productivity. In the present work, high-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations. RESULTS: For high-solid SSCF process of SO₂-catalyzed steam pre-treated wheat straw, the boosted solubilisation of WIS achieved by having all enzyme loaded at the beginning of the process is crucial for increased rates of both enzymatic hydrolysis and SSCF. A kinetic model was adapted to simulate the release of sugars during separate hydrolysis as well as during SSCF. Feeding of solid substrate to reach the instantaneous WIS content of 13 % (w/w) was carried out when 60 % of the cellulose was hydrolysed, according to simulation results. With this approach, accumulated WIS additions reached more than 20 % (w/w) without encountering mixing problems in a standard bioreactor. Feeding fresh cells to the SSCF reactor maintained the fermentation activity, which otherwise ceased when the ethanol concentration reached 40–45 g L⁻¹. In lab scale, the optimized multi-feed SSCF produced 57 g L⁻¹ ethanol in 72 h. The process was reproducible and resulted in 52 g L⁻¹ ethanol in 10 m³ scale at the SP Biorefinery Demo Plant. CONCLUSIONS: SSCF of WIS content up to 22 % (w/w) is reproducible and scalable with the multi-feed SSCF configuration and model-aided process design. For simultaneous saccharification and fermentation, the overall efficiency relies on balanced rates of substrate feeding and conversion. Multi-feed SSCF provides the possibilities to balance interdependent rates by systematic optimization of the feeding strategies. The optimization routine presented in this work can easily be adapted for optimization of other lignocellulose-based fermentation systems.