PubAg

Main content area

Effect of the desolventizing/toasting process on chemical composition and protein quality of rapeseed meal

Author:
Mosenthin, Rainer, Messerschmidt, Ulrike, Sauer, Nadja, Carré, Patrick, Quinsac, Alain, Schöne, Friedrich
Source:
Journal of animal science and biotechnology 2016 v.7 no.1 pp. 36
ISSN:
2049-1891
Subject:
amino acids, animals, antinutritional factors, bioavailability, crude protein, digestibility, glucosinolates, heat, heat treatment, hexane, in vivo studies, neutral detergent fiber, protein solubility, rapeseed meal, steam, toasting
Abstract:
BACKGROUND: During processing in a desolventizer/toaster (DT), rapeseed meal (RSM) is heated to evaporate the hexane and to reduce the level of heat-labile anti-nutritional factors such as glucosinolates (GSL). However, excessive heat treatment may reduce amino acid (AA) content in addition to lower AA digestibility and availability in RSM. The objective of the present study was to produce from one batch of a 00-rapeseed variety (17 μmol GSL/g dry matter (DM), seed grade quality) five differently processed RSM under standardized and defined conditions in a pilot plant, and to determine the impact of these different treatments on protein solubility and chemical composition, in particular with regard to contents of AA including reactive Lys (rLys) and levels of total and individual GSL. METHODS: Four RSM were exposed to wet toasting conditions (WetTC) with increasing residence time in the DT of 48, 64, 76, and 93 min. A blend of these four RSM was further processed, starting with saturated steam processing (< 100 °C) and followed by exposure to dry toasting conditions (DryTC) to further reduce the GSL content in this RSM. RESULTS: The contents of neutral detergent fiber and neutral detergent fiber bound crude protein (CP) increased linearly (P < 0.05), as residence time of RSM in the DT increased from 48 to 93 min, whereas contents of total and most individual GSL and those of Lys, rLys, Cys, and the calculated ratio of Lys:CP and rLys:CP decreased linearly (P ≤ 0.05). The combination of wet heating and DryTC resulted in the lowest GSL content compared to RSM produced under WetTC, but was associated with lowest protein solubility. CONCLUSIONS: It can be concluded that by increasing residence time in the DT or using alternative processing conditions such as wet heating combined with DryTC, contents of total and individual GSL in RSM can be substantially reduced. Further in vivo studies are warranted to elucidate if and to which extent the observed differences in protein quality and GSL content between RSM may affect digestibility and bioavailability of AA in monogastric animals.
Agid:
5486706