U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Disinfectant and Antimicrobial Susceptibility Profiles of the Big Six Non-O157 Shiga Toxin–Producing Escherichia coli Strains from Food Animals and Humans

Author:
Ross C. Beier, Eelco Franz, James L. Bono, Robert E. Mandrell, Pina M. Fratamico, Todd R. Callaway, Kathleen Andrews, Toni L. Poole, Tawni L. Crippen, Cynthia L. Sheffield, Robin C. Anderson, David J. Nisbet
Source:
Journal of food protection 2016 v.79 no.8 pp. 1355-1370
ISSN:
0362-028X
Subject:
Shiga toxin-producing Escherichia coli, acids, antibiotic resistance, benzalkonium chloride, chlorhexidine, chlorides, disinfectants, food animals, humans, pH, serotypes
Abstract:
The disinfectant and antimicrobial susceptibility profiles of 138 non-O157 Shiga toxin–producing Escherichia coli strains (STECs) from food animals and humans were determined. Antimicrobial resistance (AMR) was moderate (39.1% of strains) in response to 15 antimicrobial agents. Animal strains had a lower AMR prevalence (35.6%) than did human strains (43.9%) but a higher prevalence of the resistance profile GEN-KAN-TET. A decreasing prevalence of AMR was found among animal strains from serogroups O45 > O145 > O121 > O111 > O26 > O103 and among human strains from serogroups O145 > O103 > O26 > O111 > O121 > O45. One animal strain from serogroups O121 and O145 and one human strain from serogroup O26 had extensive drug resistance. A high prevalence of AMR in animal O45 and O121 strains and no resistance or a low prevalence of resistance in human strains from these serogroups suggests a source other than food animals for human exposure to these strains. Among the 24 disinfectants evaluated, all strains were susceptible to triclosan. Animal strains had a higher prevalence of resistance to chlorhexidine than did human strains. Both animal and human strains had a similar low prevalence of low-level benzalkonium chloride resistance, and animal and human strains had similar susceptibility profiles for most other disinfectants. Benzyldimethylammonium chlorides and C10AC were the primary active components in disinfectants DC&R and P-128, respectively, against non-O157 STECs. A disinfectant FS512 MIC ≥ 8 μg/ml was more prevalent among animal O121 strains (61.5%) than among human O121 strains (25%), which may also suggest a source of human exposure to STEC O121 other than food animals. Bacterial inhibition was not dependent solely on pH but was correlated with the presence of dissociated organic acid species and some undissociated acids.
Agid:
5491326
Handle:
10113/5491326