PubAg

Main content area

First Report of Leaf Spot Caused by Phoma dictamnicola on Dictamnus dasycarpus in Korea

Author:
Park, J. H., Cho, S. E., Lee, C. K., Lee, S. H., Shin, H. D.
Source:
Plant disease 2014 v.98 no.10 pp. 1443
ISSN:
0191-2917
Subject:
Dictamnus dasycarpus, Oriental traditional medicine, Phoma, aesthetics, agar, color, conidia, defoliation, epiphytes, flowers, fungi, gardens, genetic databases, greenhouses, harvesting, herbaria, humidity, inoculum, internal transcribed spacers, leaf spot, leaves, oils, pathogenicity, photoperiod, plastic bags, pycnidia, ribosomal DNA, seedlings, vigor, China, Korean Peninsula, Netherlands, North America
Abstract:
Dictamnus dasycarpus Turcz, known as densefruit pittany, is a perennial herbal plant belonging to the Rutaceae. In Oriental medicine, this plant is used for treatment of various ailments (4). Since the white and purple striped flowers and glossy leaves are of aesthetic value, the plant is popular in gardens throughout Korea. In July 2012, a leaf spot was observed on hundreds of D. dasycarpus with nearly 100% incidence in a garden in Gapyeong County, Korea. Lesions on leaves reaching up to 20 mm in diameter were circular to irregular, brown to dark brown, then becoming zonate with age, and finally fading to grayish brown in the center with a reddish brown margin. The disease caused premature defoliation and reduced plant vigor as well as aesthetic value. In June 2014, the same symptoms were found on D. dasycarpus in a nursery in Jinju City, Korea. Representative samples were deposited in the Korea University Herbarium (KUS). Pycnidia on lesions were epiphyllous, immersed or semi-immersed in host tissue, light brown to olive brown, and 90 to 210 μm in diameter. Ostioles were 15 to 30 μm wide and surrounded by a ring of darker cells. Conidia were hyaline, smooth, ellipsoidal to nearly reniform, straight to mildly curved, aseptate or rarely medianly 1-septate with age, 5.5 to 9.6 × 1.8 to 3.6 μm, and contained small oil drops. These characteristics were consistent with the previous descriptions of Phoma dictamnicola Boerema, Gruyter & Noordel. (1,2). A monoconidial isolate was cultured on potato dextrose agar plates and deposited in the Korea Agricultural Culture Collection (Accession No. KACC46948). Morphological identification of the fungus was confirmed by molecular data. Genomic DNA was extracted using a DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 505 bp was deposited in GenBank (Accession No. KM047023). A BLAST search showed that the ITS sequence shared >99% similarity with that of P. dictamnicola (GU237877). For the pathogenicity tests, inoculum was prepared by harvesting conidia from 30-day-old cultures of KACC46948 and a conidial suspension (2 × 10⁶ conidia/ml) was sprayed onto leaves of five healthy seedlings. Five seedlings were sprayed with sterile distilled water, serving as controls. The plants were covered with transparent plastic bags for 48 h in a 25°C glasshouse with a 12-h photoperiod. After 10 days, typical leaf spot symptoms started to develop on the leaves of the inoculated plants. The fungus, P. dictamnicola, was re-isolated from those lesions, confirming Koch's postulates. No symptoms were observed on control plants. Previously, Phoma leaf spot on Dictamnus spp. has been reported in the Netherlands and North America (3) and recently in China (1). To our knowledge, this is the first report of leaf spot on D. dasycarpus caused by P. dictamnicola in Korea. Our observations suggest that low humidity with good ventilation as well as removal of infected leaves and plant debris might be main strategies for preventing this disease.References: (1) Q. Bai et al. Plant Dis. 95:771, 2011. (2) G. H. Boerema et al. Phoma Identification Manual: Differentiation of Specific and Infra-Specific Taxa in Culture. CABI Publishing. Wallingford, UK, 2004. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, USDA ARS, Retrieved June 19, 2014. (4) J. L. Yang et al. Planta Med. 77:271, 2011.
Agid:
5491899