Main content area

First Report of Citrus leprosis virus Nuclear Type in Sweet Orange in Colombia

Roy, Avijit, León, M. G., Stone Schneider, A. L. W. L., Hartung, J. S., Brlansky, R. H.
Plant disease 2014 v.98 no.8 pp. 1162
Brevipalpus, Citrus leprosis virus C, Citrus sinensis, Dichorhavirus, RNA, Tetranychidae, coat proteins, color, crop production, cytoplasm, genes, leaves, mixed infection, molecular cloning, new genus, nucleocapsid, nucleotide sequences, oranges, phylogeny, reverse transcriptase polymerase chain reaction, sequence analysis, viruses, Brazil, Colombia, Mexico, Panama
Colombia is ranked 18th in the world in citrus production and contributed 0.9% of the total world share. Among four important citrus-producing regions of Colombia, the Orinoco region (3 to 6°N, 68 to 74°W) consists of two citrus-producing states, Meta and Casanare. Citrus leprosis is the most important viral disease of citrus in Colombia (1,3). Three types of Citrus leprosis virus (CiLV) infect citrus, producing leprosis-like lesion symptoms. Two of the three CiLV species, Citrus leprosis virus cytoplasmic type (CiLV-C) and cytoplasmic type 2 (CiLV-C2), produce particles only in the cytoplasm (3). The other species, Citrus leprosis virus nuclear type (CiLV-N), produces particles in both the cytoplasm and nucleus (4). CiLV-C is more prevalent and destructive while CiLV-N has been reported only in Brazil, Panama, and Mexico (4). Interestingly, both CiLV-C and -C2 were reported from the same regions of Meta and Casanare States in Colombia in 2004 and 2012 (1,3). CiLV-C lesions are usually rounded (initially 2 to 3 mm in diameter and extending up to 30 mm), have dark-brown or greenish central chlorotic spots, and are surrounded by yellow halos. CiLV-N lesions have been described as smaller in size and form three well-defined regions including a necrotic center with an intermediate orange color halo and an outer chlorotic halo (2). In 2013, ‘Valencia’ sweet orange (Citrus sinensis L.) leaves with suspected CiLV-N symptoms were collected from 8 plants in Casanare State and shipped under permit to the USDA-APHIS-PPQ-CPHST, Beltsville, MD. Total RNA from symptomatic and healthy sweet orange leaves were extracted using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA). RT-PCR primers specific to CiLV-C, CiLV-C2 (3), and CiLV-N nucleocapsid (N) (CiLV-N-NPF: 5′-ATGGCTAACCCAAGTGAGATCGATTA-3′; CiLV-N-NPR: 5′-AGTTGCCTTGAGATCATCACATTGGT-3′) and putative matrix protein (M) genes (CiLV-N-MF: 5′-ATGTCTAAACAGATTAATATGTGCACTGTG-3′; CiLV-N-MR: 5′-CTAACCACTGGGTCCCGC-3′) were utilized to identify the CiLV associated with the leprosis-affected leaf samples from Casanare. RT-PCR with CiLV-C primers failed to produce any amplicon, but CiLV-N primers successfully amplified the partial N gene (681 bp) and entire M gene (552 nt) amplicons from multiple leaves of all leprosis samples. In addition, a 795-bp amplicon specific to CiLV-C2 also was amplified from the CiLV-N suspected samples. Similar results were obtained when the vector, flat spider mite (Brevipalpus spp.) total RNA was used as template for RT-PCR. For further confirmation, each amplicon was cloned and sequenced. Sequencing of the N and M gene amplicons of CiLV-N (accession nos. KJ195893 and KJ195894) and coat protein gene of CiLV-C2 showed 97 to 99% nucleotide sequence identity with the CiLV-N M2345 isolate sequence (KF209275) from Mexico (4) and CiLV-C2 L147V1 isolate sequence (JX000024) from Colombia (3), respectively. Phylogenetic analyses of these N and M protein gene sequences confirmed a mixed infection of the same plant with two viruses, one from an unassigned new genus Dichorhavirus (CiLV-N) and another from genus Cilevirus (CiLV-C2). This is the first report of CiLV-N in Colombia, and also the first report of an occurrence of CiLV-N in mixed infection with CiLV-C2. All three known species of CiLV occur in the Orinoco region of Colombia.References: (1) M. G. León et al. Plant Dis. 90: 682, 2006. (2) J. P. R. Marques et al. Anais da Academia Brasileira de Ciências 82:501, 2010. (3) A. Roy et al. Phytopathology 103:488, 2013. (4) A. Roy et al. Genome Announc. 1(4): e00519-13, 2013.