Main content area

Biological Impact of Divergent Land Management Practices on Tomato Crop Health

Chellemi, Dan O., Wu, Tiehang, Graham, Jim H., Church, Greg
Phytopathology 2012 v.102 no.6 pp. 597-608
Fusarium oxysporum f. sp. lycopersici, Fusarium wilt, Meloidogyne, Paspalum notatum, Solanum lycopersicum, bacterial communities, community structure, cover crops, crop yield, discing, fallow, internal transcribed spacers, land management, organic production, pastures, ribosomal DNA, root galls, roots, soil, soil amendments, soil fumigation, soil fungi, sustainable development, tomatoes, weeds
Development of sustainable food systems is contingent upon the adoption of land management practices that can mitigate damage from soilborne pests. Five diverse land management practices were studied for their impacts on Fusarium wilt (Fusarium oxysporum f. sp. lycopersici), galling of roots by Meloidogyne spp. and marketable yield of tomato (Solanum lycopersicum) and to identify associations between the severity of pest damage and the corresponding soil microbial community structure. The incidence of Fusarium wilt was >14% when tomato was cultivated following 3 to 4 years of an undisturbed weed fallow or continuous tillage disk fallow rotation and was >4% after 3 to 4 years of bahiagrass (Paspalum notatum) rotation or organic production practices that included soil amendments and cover crops. The incidence of Fusarium wilt under conventional tomato production with soil fumigation varied from 2% in 2003 to 15% in 2004. Repeated tomato cultivation increased Fusarium wilt by 20% or more except when tomato was grown using organic practices, where disease remained less than 3%. The percent of tomato roots with galls from Meloidogyne spp. ranged from 18 to 82% in soil previously subjected to a weed fallow rotation and 7 to 15% in soil managed previously as a bahiagrass pasture. Repeated tomato cultivation increased the severity of root galling in plots previously subjected to a conventional or disk fallow rotation but not in plots managed using organic practices, where the percentage of tomato roots with galls remained below 1%. Marketable yield of tomato exceeded 35 Mg ha–¹ following all land management strategies except the strip-tillage/bahiagrass program. Marketable yield declined by 11, 14, and 19% when tomato was grown in consecutive years following a bahiagrass, weed fallow, and disk rotation. The composition of fungal internal transcribed spacer 1 (ITS1) and bacterial 16S rDNA amplicons isolated from soil fungal and bacterial communities corresponded with observed differences in the incidence of Fusarium wilt and severity of root galling from Meloidogyne spp. and provided evidence of an association between the effect of land management practices on soil microbial community structure, severity of root galling from Meloidogyne spp., and the incidence of Fusarium wilt.